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Abstract

Complex models are of increasing interest to social scientists. Researchers interested
in prediction generally favor flexible, robust approaches, while those interested in cau-
sation are often interested in modeling nuanced treatment structures and confounding
relationships. Unfortunately, estimators of complex models often scale poorly, espe-
cially if they seek to maintain interpretability. In this paper, we present an example
of such a conundrum and show how optimization can alleviate the worst of these con-
cerns. Specifically, we introduce bigKRLS, which o↵ers a variety of statistical and
computational improvements to Hainmueller and Hazlett (2013)’s Kernel-Regularized
Least Squares (KRLS) approach. As part of our improvements, we decrease the esti-
mator’s single-core runtime by 50% and reduce the estimator’s peak memory usage by
an order of magnitude. We also improve uncertainty estimates for the model’s aver-
age marginal e↵ect estimates - which we test both in simulation and in practice - and
introduce new visual and statistical tools designed to assist with inference under the
model. We further demonstrate the value of our improvements through an analysis of
the 2016 presidential election, an analysis which would have been impractical or even
infeasible for many users with existing software.

Supplemental Materials prepared for Political Analysis

Full replication materials to appear on Harvard’s Dataverse
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A C++ Kernel Regularization Code

This section provides code for the RcppArmadillo portion of the routine that the

bigKRLS uses to obtain the coe�cients, c (§3.5). The “extra” calls to trans (transpose)

are computationally costless but enable computations on pointers to big matrices that could

not otherwise be performed without non-trivial speed compromises.

template <typename T>

L i s t xBigSolveForc (Mat<T> Eigenvectors ,

const co l v e c Eigenvalues ,

const co l v e c y ,

const double lambda ){

i n t N = Eigenvec to r s . n rows ;

i n t K = Eigenvecto r s . n c o l s ;

// K at most N. Typ i ca l l y sma l l e r ( based on user e i g en t runca t i on input )

double Le = 0 ; // l eave one out e r r o r l o s s

L i s t out ( 2 ) ;

// i n i t i a l i z e s c o e f f i c i e n t s to 0 s

co l v e c c o e f f s (N) ; c o e f f s . z e r o s ( ) ;

// i n i t i a l i z e s G inve r s e ’ s d iagona l ( only )

co l v e c Ginv diag (N) ;

Ginv diag . z e r o s ( ) ;

// . memptr ( ) expect s data by column
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Eigenvec to r s = trans ( E igenvec to r s ) ;

f o r ( i n t i = 0 ; i < N; ++i ){

// only l ength i to work on a t r i a n g l e o f Ginv

co l v e c ginv ( i ) ;

// . memptr ( ) obta in s raw po in t e r to p a r t i c u l a r e lements

mat temp eigen ( E igenvector s . memptr ( ) , K, i +1, f a l s e ) ;

g inv = ( Eigenvector s . c o l ( i ) . t ( )/

( Eigenva lues + lambda ) ) ⇤ temp eigen ;

Ginv diag [ i ] = ginv [ i ] ;

c o e f f s ( span (0 , i �1)) += ginv ⇤ y [ i ] ;

c o e f f s [ i ] += sum( ginv ⇤ y ( span (0 , i ) ) ) ;

}

Eigenvec to r s = trans ( E igenvec to r s ) ;

f o r ( i n t i = 0 ; i < N; ++i ){

Le += pow( ( c o e f f s [ i ] / Ginv diag [ i ] ) , 2 ) ;

}

out [ 0 ] = Le ; // d e c i s i o n to accept lambda and use c o e f f s based on Le

out [ 1 ] = c o e f f s ;

r e turn out ;

}
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B Descriptive Statistics for 2016 Election Study

Figure 4 gives summary statistics for the variables used in our applied example in §5.

All race and education variables are given in percentage point units. Units for other variables

are given in table notes. For our applied example, we also include latitude, longitude, and

state dummy variables as additional predictors. Replication materials are available here.

Table 4: Descriptive statistics for Section 4

Variable Mean SD Source

� GOP presidential vote share, 2012-16i 5.86 5.26 Townhall
Mortalityii 8.17 1.48 CDC
� Mortalityii -0.04 0.71 CDC
Urban-Rural Continuumiii 4.98 2.70 USDA
Ageiv 4.03 0.50 US Census
Incomev 4.85 1.23 USDA
Unemployment 5.5 1.94 USDA
Poverty 3.13 1.17 USDA
No High School Diploma 14.60 6.63 USDA
High School Graduate 34.76 7.07 USDA
Some College 30.23 5.15 USDA
College Graduate 20.40 9.01 USDA
White 78.55 19.60 CDC
Latino 6.69 13.27 CDC
Black 8.93 14.71 CDC
Asian 0.97 3.14 CDC

All variables below and including “Unemployment” represent county-level percentages.
i The dependent variable is measured % Trump - % Romney via McGovern’ s data.
ii All cause mortality per 1,000 individuals and age-adjusted. Mortality change subtracts 2013-2015 from
2009-2011. Data from counties with fewer than 10 deaths are suppressed by the CDC for privacy reasons,
and are excluded from this analysis.
iii Ordinal variable, ranging from 1 (most urban) to 7 (most rural).
iv Average; measured in 10s of years.
v Median household income (in $10,000s).
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C Simulations

In this Appendix, we describe a series of simulation experiments we reference throughout

the text of our paper. We begin by describing the basic simulation setup we employ for most

experiments, which we modify where necessary in each test.

C.1 Setup

Our simulation procedure is organized as follows. Using the county-level election dataset

we use in our applied example presented in §4, we constructed a dataset containing eight

variables: age-adjusted mortality, urban-rural continuum, age, income, unemployment rate,

poverty rate, % college graduate, and % white. We then simulated a dependent variable

using the following data-generating process:

yi = Xi�1 +X2
i�2 +X3

i�3 +X4
i�4 +Xi⇥z[i] + ✏

Where Xi denotes the ith row of X, �j represents a column vector of coe�cients cor-

responding to the jth-order polynomial of X. Since county-level data possess a natural

hierarchical grouping, we incorporated a hierarchical component into our data-generating

process by grouping counties into the 9 US Census regions, and perturbing each linear e↵ect

based on district membership. In particular, we constructed ⇥ as a 9⇥P matrix of hierarchi-

cal e↵ect disturbances, and z[i] as an auxiliary matrix denoting the census division to which

the ith county belongs. To place values on these coe�cients, we set �1 ⇠ Uniform(0, 2),

�j>1 ⇠ Uniform(�4, 4), and ⇥ ⇠ Uniform(�2, 2), and ✏ ⇠ Normal(0, 3000). We selected

our error covariance value in order to ensure that the in-sample R2
K value remained reason-

ably close to its observed value in our dataset (R2
K ⇡ 0.8). Finally, we standardized each

coe�cient based on the standard deviation of the variable in question, in order to ensure

that derivative calculations were not dominated by any one term.

Our target for most simulations in this section is the population average marginal e↵ect

5



(AME), defined as:
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2�2

n
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i +
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⇥z[i]

Which simply represents the average derivative of the equation given above with respect

to each row of X.

C.2 Degrees of Freedom Correction for Average Marginal E↵ects

Using the simulation setup described in the previous section, we examined the impact

of our degrees of freedom correction at various sample sizes and under two di↵erent data-

generating processes.

Our procedure functioned as follows. First, we drew values for all parameters besides

✏ using the procedure described above. Next, for each iteration, we drew ✏ and a random

subsample of our dataset. We then generated our dependent variable according to two

data-generating processes, which we label “complex” and “simple”. The “complex” DGP

is identical to the equation described in the previous section. The “simple” DGP consists

of this same equation, but with all second-, third-, and fourth-order polynomial coe�cients

fixed at zero. Using these two DGPs, we fit two models using bigKRLS to the combined

matrix consisting of the eight predictor variables and the eight US Census divisions for the

observations selected into our sample, and calculated marginal and average marginal e↵ects

(AMEs) for the eight predictor variables. Finally, for each variable in each model we recorded

AME estimates, standard error estimates (corrected and uncorrected), and other auxiliary

information.

Coverage results of this experiment both with and without our degrees of freedom

correction are are presented in Figure 8. In nearly all cases, empirical coverage results are

somewhat lower than their nominal 0.95 value, which likely reflects the bias in our estimates
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Figure 8: Simulated AME coverage results
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Note: values represent average coverage rate across 100 iterations, with 8 coe�cients in each iteration.

produced by the regularization strategy we employ. However, the impact of our correction

is clear. In the “simple” DGP, both strategies return essentially identical results. But, in

the “complex” DGP, our correction represents approximately a 10 � 15 percentage point

increase in empirical coverage rate, bringing the empirical rate substantially closer to the

nominal value. Unsurprisingly, the di↵erence in coverage rates is somewhat smaller at larger

samples. However, at all sample sizes we examine, the correction we propose has a clear

positive impact.

To probe these results more closely, an anonymous reviewer suggested the following

additional test. Since the KRLS estimates are biased due to the regularization procedure

we employ, an alternative to examining standard coverage rates is to compare the standard

error estimates produced by the corrected and uncorrected model to the “true” standard

errors of the regularized AME estimates. In simulations, a straightforward resampling-style

approach to estimate these these “true” standard error values is to calculate the cross-sample

standard deviation of the AME estimates. We can then compare the corrected and uncor-
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rected standard error estimates produced in each iteration to assess which procedure more

faithfully reproduces the population standard errors for the regularized coe�cient estimates.

The results of this comparison are given in Figure 9. As before, performance of the error

estimates for the simple DGP are essentially identical across the two modeling strategies. By

contrast, for the complex DGP the two methods produce noticeably di↵erent results. Gen-

erally, our corrected standard errors perform best at smaller sample sizes, with corrected

standard error estimates for seven out of eight coe�cients outperforming their uncorrected

counterparts at N = 250. At N = 1000, by contrast, performance is split, with half per-

forming better with our correction and half performing worse. However, performance is

not constant across coe�cients; for example, our correction consistently produces similar

or superior performance for the Rural, Age, and Mortality variables, but similar or inferior

performance for the Poverty variable.

These simulation experiments o↵er several basic conclusions. For data-generating pro-

cesses involving essentially constant e↵ect estimates, our correction produces nearly identical

results to those generated using the uncorrected approach. As a result, in these cases the

choice between the two approaches is not particularly consequential. But, for data-generating

processes involving greater e↵ect heterogeneity, our correction o↵ers a noticeable performance

boost. This improvement is most noticeable at smaller sample sizes, but remains substantial

at larger samples at least as measured by coverage.

More generally, in an informal sense these results suggest that the impact of our cor-

rection will be larger to the extent that a particular user’s data-generating process is more

complex and their sample size is smaller. However, the extent to which our correction will

a↵ect a given user’s results is clearly context-dependent. In future work, further simulations

of this kind might help produce additional insight and advice for applied users. However,

since no one paper can simulate all possible scenarios, we believe that these results o↵er

reasonable justification for our choice to make the correction our default in bigKRLS.
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Figure 9: Population SE versus estimated SE for regularized AME estimates
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Note: per-coe�cient performance measured via mean absolute error, across 100 iterations per sample size.
Scales are allowed to float freely for each variable. Estimates for the “simple” DGP overlap nearly perfectly
in all cases.
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C.3 Subsample-Based AME Estimates

Estimating the kernel-based model we adopt in the KRLS framework is computation-

ally demanding. However, as suggested by an anonymous reviewer, some of the simpler

estimates contained in this model can be reasonably well-approximated using a subsampling

scheme, which cuts computation time and resources substantially. The approach we adopt is

particularly well-suited for the average marginal e↵ect estimates (AMEs) generated by this

model, which are the focus of this section. However, we also discuss the applicability of this

approach for other quantities at the conclusion of this section.28

To generate subsample-based AMEs, we propose the following approach. First, divide

the observations into M equally-sized groups.29 Second, fit a model via KRLS to each

subgroup and estimate AMEs for each model, denoted �̂(m)
AME. Since the estimated AMEs

across subgroup models are independent, we can leverage the closed-form expressions for

their values and variances to produce an aggregated set of estimates:

�̂AME ⇡

1

M

X

m

�̂(m)
AME

V (�̂AME) ⇡
1

M

X

m

V (�̂(m)
AME)

This approximation relies on the asymptotic normality of the AMEs. As a result, we should

expect this approximation to behave better with large subgroups than with small ones.

To use these estimates as part of a hypothesis test, we can use a similar t-test framework

to that proposed by Hainmueller and Hazlett (2013). However, since we now estimate P

AMEs for each subgroup, the degrees of freedom for this test will be Neffective�M⇥P , with

Neffective defined using the ridge correction we describe in §3.3. For small subsamples, then,

28This approach is related to ideas presented by, e.g., Drineas and Mahoney (2005); Kumar et al. (2012),
which represent additional directions for future research.

29 In this discussion, we assume that the subsampling scheme will produce subgroups which respect the
original KRLS assumptions. In particular, we assume that no column of any subgroup data matrix X

m

will
be constant, which can be ensured by selecting an appropriately small M or adopting a stratified subgroup
assignment scheme.
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Figure 10: Empirical coverage for subsample-based AME estimates
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Note: point estimates represent average coverage across 100 iterations. For all numbers of subgroups, the
total number of observations is N = 3, 106, the full set of counties in our dataset.

tests based on this value may be undefined, o↵ering further motivation to adopt a larger

subsample size when employing this approach.

To assess the performance of these estimates in practice, we returned to the simulation

setup we describe at the outset of this section. Using the full dataset of 3,106 counties, we

simulated e↵ects using the “complex” (hierarchical and polynomial) data-generated process

described in Appendix D.2, and subdivided the data, using 5, 10, 20, and
p

N ⇡ 56 sub-

groups. To ensure that no variables in any subgroup were constant, we stratified subdivision

assignments by census division, and fit a model to each subdivision. Using these models, we

aggregated our subgroup-level AME estimates, and assessed statistical significance for each

estimate (using ↵ = 0.05 as a significance threshold). We repeated this process 100 times

for each subsample size, and recorded coverage results for each iteration.

The results of this comparison are given in Figure 10. Following expectations, perfor-
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mance decays as the number of subgroups grows, with estimates generated using 5 subgroups

performing roughly as well as the full model with N = 1000 observations as presented in

Appendix D.2. As before, coverage results are noticeably better with our correction than

without; however, with
p

N ⇡ 56 subgroups, neither approach o↵ers adequate performance

performance.

In our view, these results suggest that a subgroup-based estimation strategy for the

AMEs can be useful. From a speed perspective, this approach is particularly appealing;

with 5 subgroups, estimating models for all five subgroups takes a total of 50 seconds,

compared with approximately 20 minutes to estimate the full model. Selecting an optimal

subgroup size is a possible direction for future research. However, since this strategy will

be most appealing for datasets with a large number of observations, opting for the largest

feasible subgroup size is a sensible strategy, especially if (as we anticipate) the primary use

case for this procedure is an exploratory one.

Adapting this strategy to more nuanced quantities (e.g., pointwise marginal derivatives)

is a promising but more challenging avenue for future work. As Grimmer et al. (2017) note,

runtime can be a limiting factor on the ability to include methods and models in an ensemble

learner (419). Establishing the conditions under which the subsampled coe�cients stabilize

for complex data generating processes is su�cient to accurately generate ŷtest and therefore

would be su�cient to adapt a subsampled version of KRLS to ensemble learner they propose.
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D Crossvalidation

D.1 bigKRLS Out-of-Sample

To assess the stability of the regression estimates, we estimated a series of five-fold

cross-validated replicates for a version of the model we present in-text. As a first cut, we

estimated on a simplified version of the dataset we present in-text. This dataset - which is

identical to the one we use in our simulation studies discussed in Appendix D - groups states

into their eight census districts, and retains eight of the predictor variables included in the

full model we present in-text (see Appendix D.1 for variable details).

The results of this experiment are presented in Figure 5. Across cross-validation repli-

cates, performance statistics are stable, indicating that the full sample estimates (presented

in the Section 4) are unlikely to have been influenced by outliers, subgroup-specific patterns,

or by our specific geographic specification. In-sample, the full model of N coe�cients consis-

tently outperforms the portion which is a linear and additive function of the x variables, the

Average Marginal E↵ects (AMEs). Out-of-sample, however, the performance gap is much

smaller. As a result, we encourage users to employ cross-validation or a similar out-of-sample

predictive strategy if precise estimates of e↵ect heterogeneity are desirable.

D.2 Comparison to Other Approaches

To assess KRLS’s out-of-sample performance relative to other modeling approaches, we

compared cross-validated performance for KRLS to a variety of other related modeling ap-

proaches. As in the previous section, to ensure that no columns were constant we grouped the

50 states into 8 US Census divisions, which were included as dummy variables in place of the

50 state-level dummies included in our original model specification. For similar reasons, we

also dropped the di↵erenced mortality variable from our model specification in this section,

since this variable was nearly constant for most counties in our dataset. All other variables

we provide in text were retained unchanged for the tests in this section (see Appendix C
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Table 5: Overview of Crossvalidation Results

In Sample Out of Sample

RMSE 3.002 3.076
(0.056) (0.199)

RMSEAMEs 3.336 3.339
(0.184) (0.271)

Pseudo R2 0.673 0.659
(0.012) (0.038)

Pseudo R2
AME 0.104 0.641

(0.011) (0.046)

Results of 100 five-fold cross-validation replicates (N
train

= 80% = 2,485 observations; N
test

= 20% = 621
observations). Average measures of fit provided along with margins of error. AME subscript indicates that
only the Average Marginal E↵ects were used to obtain fitted values in sample or predicted values out of
sample. For convenience, crossvalidate.bigKRLS, which also performs K folds cross validation, computes
these measures of fit. The low R2

AME

on the training data is best interpreted as an artifact of
regularization and the discrepancy between y and y⇤.

for details). As before, we use a 5-fold cross-validation procedure, with performance results

generated by averaging root-mean squared error (RMSE) and root-mean squared predictive

error (RMSPE) across each fold and replicated 100 times to generate uncertainty estimates.

To generate uncertainty estimates, we replicated our cross-validation process 100 times, and

presented mean and margin of error for each performance statistic.

For our comparison models, we used a simple random forest (Breiman 2001), Wager and

Athey (2017)’s Causal Forest procedure, and a series of penalized regression models trained

via the glmnet package in R. Clearly, these models are not the only possible points of com-

parison; however, since no empirical test of this kind can examine all possible approaches, we

selected this group as a representative subset of flexible, context-agnostic models commonly

used in political science.

Specifications for all additional models are as follows. For our random forest models, we

trained our models using 500 trees, with the parameter denoting the number of candidate
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variables to consider at each split selected by optimizing out-of-bag error (Breiman 2001).

For our causal forest models, we used 2000 trees, with our county-level age-adjusted mortality

variable acting as the “treatment” variable.30 For our penalized regression approaches, we

trained two sets of models. In the first set, we only allowed the models to estimate linear and

additive e↵ects for each variable. In the second set, we additionally allowed the model to

estimate coe�cients corresponding to all two-way interactions between each variable included

in our dataset. In both cases, we trained one model using a LASSO penalty, one model using

a ridge penalty, and one using an elastic net penalty (with mixing parameter set to ↵ = 0.5).

For all penalized approaches, we selected the regularization parameter � by optimizing cross-

validated error within the training set.

The results of this comparison are given in Figure 6. Compared with most other ap-

proaches, KRLS is prone to overfitting, with the largest gap between RMSE and RMSPE of

the models we examine. However, KRLS’s out-of-sample performance remains competitive.

By RMSPE, KRLS is the second-best performer, producing approximately a 1% higher RM-

SPE than a simple random forest. In our view, this result is encouraging. In most predictive

modeling contexts, random forests represent the best-performing general-purpose approach.

As a result, KRLS’s ability to essentially match a random forest’s predictive performance is

reassuring.

All other approaches we examine o↵er noticeably worse performance than simple random

forests and KRLS. By RMSPE, elastic- and ridge-penalized regression approaches trained

using all two-way interactions are the next-best performers, followed by Causal Forest pre-

dictions and the remaining penalized regression models. Causal Forests, in particular, o↵er a

useful point of comparison with KRLS. Like KRLS, the goal in the Causal Forest paradigm

is to estimate a heterogeneous e↵ect. Unlike KRLS, under appropriate assumptions Causal

Forests o↵er useful theoretical guarantees regarding causal interpretability of e↵ect estimates

30 We use “treatment” here only to denote the variable of interest in the causal forest specification. We
do not claim that our data meet the assumptions required to place causal interpretations on our mortality
variable.
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Table 6: In- and out-of-sample prediction results, comparing KRLS to related approaches

RMSE RMSPE

Random Foresti 2.389 2.381
(2.383, 2.394) (2.363, 2.399)

KRLS 2.181 2.415
(2.177, 2.184) (2.397, 2.432)

Elastic (two-way)ii 2.326 2.469
(2.308, 2.349) (2.454, 2.492)

Ridge (two-way)ii 2.333 2.470
(2.313, 2.355) (2.450, 2.492)

Causal Forestiii 2.623 2.618
(2.624, 2.635) (2.606, 2.631)

LASSO (two-way)ii 2.585 2.660
(2.571, 2.599) (2.644, 2.677)

Ridgeii 2.895 2.917
(2.880, 2.909) (2.902, 2.931)

Elasticii 2.895 2.917
(2.882, 2.913) (2.904, 2.936)

LASSOii 2.905 2.930
(2.894, 2.917) (2.916, 2.943)

Notes: Results of 100 five-fold cross-validation replicates (N
train

= 80% = 2,485 observations; N
test

= 20%
= 621 observations). RMSE denotes in-sample root-mean squared error, and RMSPE denotes
out-of-sample (predicted) root-mean squared error. Parenthetical values represent ±2 standard deviations.

i Estimated via the randomForest package, using the tuneRF function to select the number of
(randomly-selected) candidate variables to consider at each split (Breiman 2001).
ii Estimated via the glmnet package, using the cv.glmnet function to select the regularization parameter �.
“Two-way” indicates models which were trained using all two-way interactions in addition to base e↵ects.
All other models were trained using simple linear e↵ects only.
iii Estimated via the Generalized Random Forest package, using the causal forest function and specifying
age-adjusted mortality as the “treatment” variable (Wager and Athey 2017).
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for the treatment variable (Wager and Athey 2017). However, since our application in this

paper is more exploratory, KRLS’s superior out-of-sample predictive performance and abil-

ity to estimate e↵ects for each variable directly o↵er strong reasons to prefer KRLS in this

context.

17



E First Di↵erences

E.1 Significance Testing

If ytest and Ktest represent the predicted values and kernel calculated using the test

points generated by perturbing the original data matrix, then V ar(ŷK) = K0(�2
✏ I(K +

�I)�2)K and V ar(ŷtest) = K0
test(�

2
✏ I(Ktest+�I)�2)Ktest (Hainmueller and Hazlett 2013). In

practice, since �2
✏ is unknown we replace this quantity with �̂2

✏ = 1
Neff

(y �Kĉ⇤)0(y �Kĉ⇤),

with Neff defined using the degrees of freedom correction we propose elsewhere in this paper.

Since both of these quantities are distributed multivariate normal, by standard identities

their di↵erence is also multivariate normal with variance V ar(ŷK) + V ar(ŷtest). For the ith

di↵erence, the marginal distribution of that di↵erence is univariate normal, with variance

(V ar(ŷK) + V ar(ŷtest))ii.

Using these facts, we propose a straightforward hypothesis test. Our null hypothesis

is that the di↵erence between the predicted and counterfactual value is zero. Since the

marginal distribution of each di↵erence is univariate normal, a straightforward test statistic

for any given point is (ŷK�ŷtest)i
p

(V ar(ŷK)+V ar(ŷtest))ii
⇠ tNeff

. In the body of our paper, we examine

many such test points simultaneously; as a result, we correct for multiplicity by applying a

Benjamini-Hochberg procedure to the p-values generated using this procedure.
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Figure 11: Significance results for individual county-level predictions
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Notes: Statistical significance for individual county-level first di↵erences. p-values corrected via
Benjamini-Hochberg procedure, with ↵ = 0.05.
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E.2 E↵ect Sizes
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Figure 12: E↵ect sizes for county-level predictions
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