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Abstract

This paper describes a dataset and baseline
systems for linking paragraphs from court
cases to clauses or amendments in the US
Constitution. We implement a rule-based sys-
tem, a linear model, and a neural architec-
ture for matching pairs of paragraphs, tak-
ing training data from online databases in a
distantly-supervised fashion. In experiments
on a manually-annotated evaluation set, we
find that our proposed neural system outper-
forms a rules-driven baseline. Qualitatively,
this performance gap seems largest for abstract
or indirect links between documents, which
suggests that our system might be useful for
answering political science and legal research
questions or discovering novel links. We re-
lease the dataset along with the manually-
annotated evaluation set to foster future work.

1 Introduction

Authors of legal texts are frequently interested
in understanding how their document relates to
a knowledge base or to some reference text or
corpus. Because legal reasoning relies on ref-
erences to preexisting precedent, identifying the
documents or document sections (e.g. court cases;
constitutional provisions) that relate to the au-
thor’s current argument or topic of interest is an
important task. However, constructing these ref-
erence links is labor-intensive, particularly if the
set of reference texts is large or the link is ambigu-
ous. Automating this linkage task therefore offers
useful assistance for authors of legal texts.

Linking systems of this kind are also useful for
answering important political science and legal re-
search questions. For example, in US Constitu-
tional law, the Supreme Court has anecdotally ap-
peared more receptive to arguments that combine
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multiple Constitutional rights.1 However, without
an automated linking system, identifying instances
of rhetorical “commingling” of rights is labor-
intensive. Outside the American context, even
simple data on the frequency with which judges in-
voke particular constitutional rights are difficult to
gather. A generic, automated system capable of in-
ferring links between sections of judicial opinions
and related legal texts2 would therefore be valu-
able for legal and political science researchers.

With this motivation, we present a method for
linking pairs of documents – here, Supreme Court
case paragraphs and Constitution sections – based
on distantly-annotated training data. Our model
operates on the level of short pieces of text, such
as paragraphs, and gives a binary decision between
pairs of texts, marking a presence or absence of
a link. As we describe, a key challenge we face
is that our training data are generated using rules-
based heuristics, and are thus highly incomplete.
As a result, one of our main contributions is a data
preprocessing step that “strips” rules-based lan-
guage from the training data. In our experiments,
we find that this step combined with a modern
neural network model allows our system to sub-
stantially outperform both rules-driven and non-
neural baselines on a manually-tagged evaluation
set. Qualitatively, this performance gap appears
largest for paragraphs that contain abstract or indi-
rect references to Constitutional provisions, which
suggests that the system we propose might also be
useful for discovering new links not identified by
existing techniques.

1E.g., Lamb’s Chapel v. Center Moriches Union Free
School District (508 U.S. 384) and related religious speech
cases, which successfully combine free speech and free ex-
ercise of religion arguments. See McCloskey and Levinson
(2016, 162-163) for further discussion.

2E.g. other national constitutions, as in Elkins et al.
(2014).



2 Related Work

In the legal domain, initiatives including the Cor-
nell Legal Information Institute have constructed
standardized citation templates to assist users in-
terested in linking citations of various formats (see
Casanovas et al. (2016) for an overview). How-
ever, these systems are not designed to infer ci-
tations based on plain-text excerpts, which is our
problem of interest. Schwartz et al. (2015) pro-
pose a topic model-based approach that suggests
citations to relevant US Supreme Court case law
based on user-inputted free text. Because this sys-
tem only draws links between excerpts and full
Supreme Court cases, it is coarser than ours, but
provides perhaps the closest point of comparison
in the legal domain (Branting, 2017). A closer
comparison point is Nomoto (2018), who propose
an approach that infers paragraph-level citation
links between published scientific papers.

The methods that we adopt to solve this prob-
lem draw inspiration from several fields in natu-
ral language processing (NLP) and machine learn-
ing, including multilabel classification (Boutell
et al., 2004; Nam et al., 2014), dataless classi-
fication (Chang et al., 2008), citation resolution
(Duma and Klein, 2014), and entity linking (Rati-
nov et al., 2011; Shen et al., 2015). Our method
of collecting training data is reminiscent of distant
supervision techniques (Mintz et al., 2009).

3 Data Collection

To obtain training data, we draw on the Cornell
Legal Information Institute (Cornell LII)’s reposi-
tory of US Supreme Court opinion texts.3 We be-
gan by scraping all text associated with all opin-
ions available through the Cornell LII site. For
each case, we then removed all HTML markup,
editorial information, and other non-opinion lan-
guage (e.g. footnotes, case summaries, or front
matter), and split the remaining text into para-
graphs. For each paragraph, we then checked
whether that paragraph contained a hyperlink to
a section of the US Constitution. If any hyperlinks
were present, we stored the paragraph and linked
Constitution section(s) as training pair(s). Finally,
we removed any duplicate paragraphs. This pro-
cess left us with a total dataset of ∼ 328k unique
paragraphs, of which ∼ 8k contained at least one
link, and a total of ∼ 11k links.

3https://www.law.cornell.edu/

Inspecting these data, we noticed that the anno-
tation was inconsistent and incomplete. For ex-
ample, not all paragraphs with the phrase “First
Amendment” linked to the First Amendment. To
solve this problem, we manually created a small
list of rules for annotation. The list contained
about 100 rules, and consisted mainly of map-
ping amendment names (“Seventh Amendment”
or “7th Amendment”) to the correct label. We
also included several representative phrases, such
as “free speech”, “due process clause”, and others.
After this annotation, we had ∼ 36k paragraphs
with at least one link, and ∼ 41k links total.

Though convenient, this process created certain
trivial dependencies between linked paragraphs,
which might limit a model’s ability to general-
ize. Because hyperlinks and rules are associated
with text, all linked paragraphs necessarily contain
rule strings that correspond to the linked Constitu-
tion section. For example, all paragraphs that link
to the First Amendment necessarily contain rule
strings such as “First Amendment”, “1st Amend-
ment”, or “Amendment I”. A model trained on this
dataset would likely treat the presence/absence of
strings like these as strong classification signals,
which is undesirable if the goal is to identify links
between paragraphs that do not explicitly mention
the name of the linked paragraph.

To encourage the model to move beyond these
trivial patterns, we therefore create a modified
copy of our training set, which we term the
“stripped” dataset. In the “stripped” dataset, we
randomly select half of the training examples,
and delete all hyperlink or rule strings that occur
within the text of these training examples, leaving
potentially disfluent sentences. We delete hyper-
link and rule strings from only half of training ex-
amples because presence of a phrase such as “First
Amendment” is still a strong linking signal which
we would like to preserve.

In our evaluations, we assess model perfor-
mance on both the original and “stripped” datasets
separately. We emphasize that this “stripping”
process does not change the number of observa-
tions in either our training or evaluation sets. In-
stead, the “stripping” step simply removes rule
strings from certain training examples, which (we
suggest) compels our downstream tagging model
to move beyond simply re-learning the rules we
use to construct our training set.

https://www.law.cornell.edu/


3.1 Manual Annotations

To assess model performance, we hand-annotated
Constitutional references in all paragraphs (n =
1241) from an additional five Supreme Court
cases: Griswold v. Connecticut (381 U.S. 479),
Miranda v. Arizona (384 U.S. 436), US v. Nixon
(418 U.S. 683), Texas v. Johnson (491 U.S. 397),
and NFIB v. Sebelius (567 U.S. 519). We empha-
size that these cases were not selected randomly.
Since most Supreme Court cases infrequently ref-
erence the Constitution, we chose these cases be-
cause they litigate important constitutional law
questions, and are therefore likely to contain a
high density of positive examples with which to
assess model performance.

These five cases provide two other desirable
properties for an evaluation set. First, each of
these cases addresses a different legal issue (e.g.
criminal rights in Miranda; free speech in Texas v.
Johnson). As a result, each case is likely to contain
references to a distinct set of Constitutional provi-
sions. Second, these cases also vary substantially
in rhetorical style. For example, Justice Douglas’s
opinion in Griswold famously references and con-
nects the “penumbras” of various Constitutional
provisions in order to identify a right to privacy.
Since most of these references consist of passing
references to standard provision names (e.g. “First
Amendment”; “Due Process Clause”), we expect
the links in Griswold to be “easy” to predict. By
contrast, US v. Nixon and NFIB v. Sebelius tackle
abstract questions regarding the scope of Presiden-
tial and Congressional powers. As a result, they
are more likely to indirectly reference Constitu-
tional provisions, thus providing a more substan-
tial challenge, and more room to improve.

4 Methods

Our data are defined in terms of input documents
D, and reference documents C. The goal of the
task is to link an input document d ∈ D to zero
or more reference documents. Formally, we will
create a model of the form h(d) → y, where
y ∈ {0, 1}|C| and yi = 1 if d is to be linked to
document ci ∈ C. If y = {0}|C|, this means that d
links to no paragraph (true for most pieces of text,
including this paragraph).

We emphasize that our aim in this preliminary
work is not to discover the best architecture for
this task, but to provide strong baselines for future
work to build on.

The judge Amendment…

…

Excessive bail inflicted…

…

Feed-forward

Constitution sectionCourt document section

doc2vec doc2vec

Figure 1: Diagram of the neural network architecture
for a single binary classifier in the multilabel space.
Token embeddings are from BERT, and we use a single
doc2vec for both paragraphs. This system is described
in Section 4.3, and corresponds to equations (1)-(3).
The � refers to element-wise multiplication.

4.1 Rule-based

An intuitive baseline is to use the rules defined for
the annotation process as the entire labeling strat-
egy. Instead of applying these rules to the training
data, we apply them to the test data directly. As
with any rule-based system, we would expect that
this achieves high precision and low recall.

4.2 Linear Model

Beyond the rule-based system, we also imple-
mented a linear multi-label classifier. Our imple-
mentation is a variant of the so-called Binary Rele-
vance framework (Boutell et al., 2004; Nam et al.,
2014), which builds a separate classifier for each
label. As such, the problem decomposes to build-
ing C separate classifiers: h(d) → {hi(d)}|C|i=1,
where hi(d)→ {0, 1}.

We used logistic regression as the model, and
used unigrams, bigrams, and trigrams as fea-
tures. Since the training data is wildly imbalanced
towards unmatched paragraphs, we employ two
tricks in our training. First, as a preprocessing
step, we selected all examples with links, but sub-
sampled the unmatched examples such that there
was an equal number of matched and unmatched.
Second, we downweighted all negative examples
in training by a constant factor. This deals with
the fact that every positive example for one class



Model P R F1

Rule-based 91.8 47.0 62.2
Linear (original) 79.0 45.8 58.0
Linear (stripped) 68.3 54.3 60.5
Neural Network (original) 82.1 46.8 59.6
Neural Network (stripped) 76.5 56.2 64.8

Table 1: Results on the manually annotated test set.
The top row uses the rule based classifier. The bottom
two rows use the neural network model trained on the
original and stripped training sets respectively.

is a negative example for all other classes, and also
that the quality of annotation is unsure, as in (Liu
et al., 2003).

4.3 Neural Network Model

In addition to the two prior baselines, we model
this problem using a neural network classifier.

Inspired by work in dataless classification
(Chang et al., 2008), a key observation in this
model is that each element in the output vector y
represents a document, not just a label. Under this
observation, we can create a meaningful represen-
tation for each label which gives an additional sig-
nal for classification. As such, we use the index i
to retrieve ci, and rewrite the decision function as
hi(d, ci) → {0, 1}. Ultimately, we define a single
model for all hi(·) as follows:

vd = d2v(T (d)), vd ∈ R2k (1)

vci = d2v(T (ci)), vci ∈ R2k (2)

hi(d, ci) = f(vd � vci) (3)

Where T is a token embedding function, d2v
is a document embedding function (with hidden
states of size k), and f is a feed forward neu-
ral network layer that projects to two dimensions.
Loosely speaking, the function hi can be under-
stood as measuring the similarity between the vec-
tor representations of d and ci. We used allennlp
to build our systems (Gardner et al., 2017). Our
architecture is depicted in Figure 1.

For the token embedding layer T , we used the
BERT base cased pretrained embeddings (Devlin
et al., 2018), as provided by huggingface.4 For the
document embedding layer d2v, we used a bidi-
rectional LSTM with hidden size 300, 2 layers,

4https://github.com/huggingface/
pytorch-pretrained-BERT/

and dropout 0.5. This embedder converts a se-
quence of embeddings into a fixed length by run-
ning the bidirectional LSTM over the sequence
and concatenating the resulting context vectors
from each direction. This document representa-
tion then has length equal to twice the hidden di-
mension of the LSTM, corresponding to the con-
catenation of the left and right context vectors.

We employed the same negative sampling and
negative reweighting techniques for this model as
described for the linear model.

4.4 Evaluation

During training, we tuned according to a split of
the original train data. Since this data is automati-
cally generated, it is not a good indicator of perfor-
mance. Instead, we report all of our results on the
manually annotated test set, described in Section
3.1. Since the decision from most of the classifiers
will be 0, we evaluate the outputs of our model us-
ing F1 measure, calculated without regard to any
individual class.

All of our code, data, and trained models are
available online.5

5 Results and Analysis

Table 1 shows our main results. As expected, the
rules-based approach gives high precision but low
recall on the manually annotated set.

Interestingly, the linear and neural models
trained on the original (unstripped) data achieve
similar recall as the rule-based method, but suffer
in precision. One explanation is that the imbal-
anced distribution of labels in the training set leads
to overfitting of frequently-attested labels (hence
the similar recall), and poor performance on all
others (hence the drop in precision). The exam-
ples in Table 2 reinforce this idea.

Finally, the “stripped” results for each model
show lower precision but higher recall relative to
the original setting. We consider this an encourag-
ing first step, which shows that the rule-stripping
approach is important to prevent the model from
simply re-learning deterministic training set rules.
This pattern is particularly noticeable for the neu-
ral network model, which achieves the highest re-
call and highest overall performance of all ap-
proaches when trained on the “stripped” data.

In Table 2, we show some examples of pre-

5https://github.com/mayhewsw/
legal-linking

https://github.com/huggingface/pytorch-pretrained-BERT/
https://github.com/huggingface/pytorch-pretrained-BERT/
https://github.com/mayhewsw/legal-linking
https://github.com/mayhewsw/legal-linking


Input sentence Rule Pred. NN Pred.

The defendant argued that their right to free speech
had been chilled.

First Amendment First Amendment

This was a Second Amendment case. Second Amendment Second Amendment

This was a Ninth Amendment case. Ninth Amendment Sixth Amendment,
Eighth Amendment

The court argued that the punishment was not only
cruel, but also unusual.

Unmatched Eighth Amendment

The decision in Escobedo v. Illinois, 378 U.S. 478,
stressed the need for protective devices to make the
process of police interrogation conform to the dic-
tates of the privilege.

Unmatched Fifth Amendment

Table 2: A comparison of predictions from the rule-based system and the neural network model (stripped). The
linear model is omitted to save space. Bold text represents text matching a rule. The three table sections correspond
to examples on which 1) both models are correct 2) only rule-based is correct, and 3) only the neural network is
correct. The last example is taken from the manually annotated test examples, with some formatting removed.

dictions from the rule-based system and the neu-
ral network model (the linear model is omitted to
save space). The table has three sections, cor-
responding to examples on which 1) both mod-
els are correct, 2) only rule-based is correct, and
3) only the neural network is correct. The ex-
ample from the second section (“Ninth Amend-
ment case”) is interesting in how it contrasts with
the nearly identical sentence above it (“Second
Amendment case”). Naturally, the rule-based sys-
tem correctly tags both, but the neural network
is only correct on the “Second Amendment” sen-
tence. This is likely because of imbalances in the
training data, such that sentences with the phrase
“Second Amendment” are common, but sentences
with the phrase “Ninth Amendment” are much less
common. In fact, in the training split we used, the
phrase “Ninth Amendment” appeared less than 10
times out of nearly 40K examples.

The bottom section shows the power of the
neural network model. Words such as “cruel”,
“punishment”, and “unusual” are distinctive of the
Eighth Amendment, even though they are in a dif-
ferent order. Similarly, “the privilege” is a com-
mon shorthand for the Fifth Amendment’s protec-
tions against self-incrimination (“No person [...]
shall be compelled in any criminal case to be a
witness against himself”→ “the privilege against
self-incrimination” → “the privilege”). Such ex-
amples are of particular interest to legal practi-
tioners, but are difficult to capture in a rules-based
framework.

6 Conclusions

We have introduced a new task for linking portions
of text from Supreme Court cases to the US Con-
stitution, some data supporting this task (although
with incomplete annotations), and some baseline
models, including a rule-based system, a linear
model, and a neural network system. Although
the neural network system outperforms both the
rule-based and linear systems, there is still further
exploration to be done both in the direction of au-
tomatic or distant labeling, and in problem mod-
elling. We look forward to other researchers using
this dataset for future work.

From a practical perspective, we anticipate that
this dataset could be used to give valuable insights
on research questions of interest to the world of
political science. For example, these data could
be used to study which amendments tend to see
higher litigation rates according to the period in
the Supreme Court, or rhetorical co-citation of
Constitution sections.
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